
Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems

Hardware Oriented Content-Adaptive Fast
Algorithm for Variable Block-Size Integer Motion

Estimation in 1.264

Yu-Han Chen, Tung-Chien Chen, and Liang-Gee Chen
DSP/IC Design Lab, Graduate Institute of Electronics Engineering and

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
Email:{doliamo, djchen, lgchen}(video.ee.ntu.edu.tw

Abstract- Motion estimation can reduce temporal redundancy
and achieve high compression capability in video coding stan-
dards. In H.264, the coding gain is further improved by variable
block-size motion estimation (VBSME). In order to reduce the
complexity, many fast algorithms have been proposed. Though
previous works can reduce a large amount of computation,
most of them are not suitable for hardware implementation
and not robust for complex motion videos. A content-adaptive
fast algorithm for variable block-size integer motion estimation
(VBSIME) is proposed in this paper. Motion activity is exploited
to improve the coding efficiency. Because of the good data
reuse scheme and simple control flow, the proposed algorithm
is applicable to hardware implementation. According to the
simulation results, about 98% searching candidates and 86%
encoding time are reduced with at most 0.05dB quality drop
in average compared with full search even for complex motion
videos.

I. INTRODUCTION
H.264 is an advanced video coding standard co-developed

by ITU-T Video Coding Experts Group and ISO/IEC Moving
Picture Experts Group [1]. This standard provides superior
coding tools to upgrade the coding efficiency and video quality
when compared with previous standards. Due to its high
compression capability, H.264 is potential to be adopted in
many emerging applications.

Motion estimation is the core technique to remove temporal
redundancy and to achieve high compression ratio in video
coding standards. VBSME largely enhances the ME perfor-
mance in H.264. For coding a macroblock (MB), 7 kinds
of block-sizes (16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and
4x4) are allowed. In reference software [2], matching costs
of different block-sizes are calculated individually. Without
good data reuse, 7 times of computational resources are
required. To solve this problem, all SAD (Sum of Absolute
Difference) costs of the smallest 4x4 blocks are computed
first. Next, other costs of larger block-sizes are generated
from the 4x4 costs. Finally, full search is applied to all kinds
of partitions by means of the pre-computed costs. Though
computation is greatly reduced, a large amount of memory is
required to store all SAD data. For hardware consideration, it
is infeasible. In [3], a full search algorithm and its architecture
for VBSME has been proposed. Unlike the sequential flow
in reference software, all costs of different block-sizes are
computed in parallel, and good data reuse is attained. However,

(a)

Fig. 1.
frame.

(b)

Complex motion scene. (a) The current frame; (b) The previous

in resource-constrained systems such as mobile devices, fast
search algorithm is a must. Therefore, a fast search algorithm
with a good data reuse scheme is required.
VBSME is useful for videos with complex motion. An

example is depicted in Fig. 1. In this scene, the moon is still
but the cloud is moving. We can't get good matching block
for whole 16 x 16 MB in the center unless the 16 x 8 partition
is used. Traditional fast algorithms are developed for single
block-size and easy to be trapped in local minimum. That is
to say, they can't provide robust coding efficiency especially
in complex motion videos. For VBSME, motion activity in
the neighboring area should be exploited well. In the complex
motion area, more computation is needed to search for the best
matching candidate. On the other hand, less computation is
consumed while the motion is simple. A motion-adaptive fast
algorithm for VBSME is beneficial to computation reduction
and quality maintenance.

In this paper, a hardware oriented content-adaptive fast al-
gorithm for VBSME is proposed. Motion activity is exploited
well to improve the coding efficiency. Because of the good
data reuse scheme and simple control flow, it is suitable for
hardware implementation. The rest of this paper is organized
as follows. For a start, problem analysis is illustrated in section
II. Then, the proposed fast algorithm followed by the hardware
architecture is introduced in section III. The performance is
shown in section IV. Finally, we will give a conclusion in
section V.

II. ANALYSIS

Though VBSME contributes high coding efficiency, it also
occupies a major part of computational load in H.264 encoder.

0-7803-9266-3/05/$20.00 C2005 IEEE.

December 13-16, 2005 Hong Kong

- 341 -

According to the run time profile, about 60% computation time
is spent in integer motion estimation (IME) when the searching
range (SR) is set to 16. With SR larger than 32, IME will
dominate whole encoding system (more than 90%). In order
to reduce the complexity and meet the real-time constraint, a
fast search algorithm for VBSIME is needed.

Conventional fast block matching algorithm (BMA), such
as four step search (4SS) [4] and diamond search (DS) [5] are
developed for previous standards with single block size. If we
directly adopt them for VBSME with the sequential procedure
in reference software, computation reduction is limited. The
SAD reuse scheme in reference software is not suitable here
because pre-computing all SAD costs is too expensive for fast
search algorithms. Without good data reuse, the computation
will increase proportional to the number of block-sizes. For
example, the minimum number of searching candidates for
DS is 13 in previous standards but 91(13 x 7) in H.264. That
is to say, a fast search algorithm with good data reuse scheme
is important.

Several fast algorithms for VBSME have been proposed.
In [6], authors propose a top-down procedure to process the
largest 16x16 block first. In [7], a bottom-up approach starting
from the smallest 4x4 blocks is suggested. By combining the
above two ideas, a merge-and-split scheme is proposed in [8].
In these algorithms, motion estimation for different block-sizes
are performed sequentially in defined criteria, and computation
is reduced by early termination scheme. However, the control
is complex ,and the sequential flow still leads to poor data
reuse.

In [9], a data-adaptive motion estimation algorithm is
proposed. According to the motion activity, the proposed
algorithm adjusts the size of searching window to reduce
unnecessary computation. Because full search is applied within
the adaptive window, it can achieve good data reuse. However,
in complex motion areas, the SR should be large enough
to maintain video quality which leads to a large amount of
computation.

According to these considerations, a fast search algorithm
with a good data reuse scheme and a simple control flow
is required. Besides, motion activity needs to be exploited
well to improve the coding efficiency especially in complex
motion areas. In the following section, our proposed algorithm
satisfying all the requirements above will be introduced.

III. PROPOSED CONTENT-ADAPTIVE FAST ALGORITHM
A. Concepts
As mentioned before, a good data reuse scheme is important

for fast search algorithms. In fact, if we compute all corre-
sponding 4x4 SAD costs for a search point, all other costs
of larger block-sizes can be directly merged from them. In
this way, the SAD costs can be reused well without additional
memory usage. This scheme seems similar to that in reference
software, but they are different in several points. First, our
scheme reuse the SAD costs immediately for one searching
candidate. We don't need to store them in the memory and
it's very efficient for hardware consideration. Secondly, all the

MV2 MV3

MV1

Fig. 2. Neighboring predicted motion vectors.

Fig. 3. The proposed moving window fast search algorithm.

costs of different block-sizes are generated simultaneously.
Unlike the sequential flow in reference software, motion
estimation for different block-sizes needs to be processed in
parallel for this scheme. However, this parallel flow leads to
inaccurate motion vector (MV) costs which will induce some
quality loss in low bit-rate condition. We will show the quality
degradation in section IV.

Using MV predictors is the general idea to exploit the
spatial correlation between neighboring MBs. Conventional
video coding standards use the median MV of left, up, and
up-right MBs (as depicted in Fig. 2) as the MV predictor of
the current MB. But in a complex motion area, the predictor is
not accurate. If we only search the area around the predictor,
coding efficiency may drop severely. To solve this problem, a
moving window fast algorithm is proposed (as depicted in Fig.
3). First, the adaptive moving window is generated according
to the neighboring motion vectors ,and motion activity is
predicted accurately. Secondly, fast search is applied to not
only the predictor but also the vertices of the moving window.
It can catch the complex motion better and contribute high
coding efficiency.

Motion vectors in a simple motion region have a strong
correlation with the predictor. Besides, MBs in the zero motion
background usually have motion vectors around the origin.
Hence, an adaptive algorithm is needed to search more initial
candidates in complex motion videos and less in simple ones.
That is to say, the searching effort should be adapted to motion
activity.

B. Procedures
The flow of the proposed algorithm is shown in Fig. 4.

At first, motion activity is exploited to generate the moving
window and the initial searching candidates. Then, the fast
search is applied from the initial candidates, and all the costs
of different block-sizes are computed in parallel. After several
passes of iterations, the 41 best integer MVs and costs are
generated.

- 342 -

Exploit the
neighboring motion

information

Generate the moving
window and initial

searching candidates

Set the initial point

Apply fast search Iterations
algorithm

Compute all SAD
costs in parallel

41 MVs and costs

Fig. 4. The flow of the proposed content-adaptive algorithm.

Four boundaries of the moving window are generated from
neighboring MVs (MV1, MV2, and MV3 in Fig. 2) as follows.

Boundup = max(MVYi, MVY2, MVy3)
Bounddow, = min(MVyl, MVY2, MVy3)
Boundleft =min(MVx1, MVx2, MVx3)
Boundright= max(MVxl, MVx2, MVx3)

Next, the number of the initial searching candidates should
be adjusted by the motion information. If the horizontal
components of motion vectors MV1, MV2, and MV3 (in
Fig. 2) are all the same, it means horizontal motion is well
predicted in this area. We can shrink the moving window in
the horizontal direction to save unnecessary computation. For
the vertical direction, it's in the same manner. The conditions
are shown as follows.

If (MVxl = MVx2 = MVx3)
Then Shrink horizontal moving window

If (MVyl = MVy2 = MVy3)
Then Shrink vertical moving window

In Table I, we show the number of searching passes and the
states of moving window for different conditions. Because
background with zero motion may usually occur, we always
need to add the origin as another initial candidate. At last, 2,
4, or 6 passes of fast search will be applied according to the
motion activity in the video content.

C. Hardware Architecture
Due to the good data reuse scheme and simple control

flow, the proposed algorithm is suitable for hardware imple-
mentation. The hardware architecture is shown in Fig. 5. The
searching window SRAMs are used to stored all the reference
pixels inside SR. The data are loaded from external SDRAM
through the system bus. In order to compute all costs in
parallel, we need to generate the 16x16 absolute difference
values simultaneously. Therefore, 16x16 registers are used as
the current MB buffer, and 16x16 shift register array is needed
to store the reference pixels. The reference data are shifted

TABLE I
LIST OF THE NUMBER OF INITIAL CANDIDATES AND THE STATES OF

MOVING WINDOW EXPANSION.

Fig. 5. The hardware architecture of the proposed algorithm.

according to the movement (upwards, downwards, leftwards,
and rightwards) of the searching candidate. Because all data
needed are stored in registers, we can compute all the absolute
difference values simultaneously and accumulate them to the
41 SAD costs. After these SAD costs are added by the MV
costs, the final costs are compared to the previous best costs
and stored into buffer if the current results are better. A
control unit is needed here. It loads the motion information and
generates the initial searching candidates at the start. During
block matching process, it generates the control signals for
reading the required data from searching window SRAMs,
shifting the reference register array in the proper direction,
and generating the MV costs.

IV. SIMULATION RESULTS
The proposed content-adaptive algorithm is embedded into

reference software JM8.2 encoder. We have tested 1 QCIF and
5 CIF sequences with low, medium, and high motion activity.
FSS is chosen as the fast search algorithm in our proposed
algorithm. Because its square search pattern is similar to full
search and suitable for hardware implementation. Table II
shows the PSNR drop, bitrate increasing, and the number
of search points per MB. The performance of 6FSS, 2FSS,
and the proposed content-adaptive algorithm are compared
with full search in JM8.2. 6FSS algorithm fixes 6 passes
of iterations for the fast search algorithm (the origin, the
predictor, and the four vertices of the moving window). 2FSS

- 343 -

Horizontal

Shrink Expand
Shrink 19

.y
Virtical

Expand

TABLE II

LIST OF PSNR DROP, BITRATE INCREASING, AND SEARCH POINTS PER

MB FOR 6FSS, 2FSS, AND THE PROPOSED CONTENT-ADAPTIVE

ALGORITHM COMPARED TO FULL SEARCH IN REFERENCE SOFTWARE.

R-D Curve (Stefan, CIF, SR = 32, 1 ref frame, IPPP.)

-Proposed AlgorithmX
---2FSS

- - - JM8.2 Full SearchX

Fig. 6. R-D curve of Stefan sequence.

Run Time (Stefan, CIF, SR=32, 1 ref frame, IPPP...)

15 20 25 30
QP

algorithm uses only 2 initial candidates (the origin and the
predictor) without expanding the moving window. From Table
II, our proposed content-adaptive algorithm finds a good
trade-off between quality and computation. For low motion
sequences (like "Silent"), most computation is saved. On the
other hand, more search points are consumed to maintain
coding efficiency in high motion videos. For example, bitrate
increase a lot in 2FSS but less in the proposed content-adaptive
algorithm for Stefan and Foreman sequences. The R-D
curve of Stefan sequences is shown in Fig. 6. The coding
efficiency of the proposed algorithm is close to that of JM8.2.
A little performance degradation in low bitrate range is due
to inaccurate motion vector cost. However, the average PSNR
drop is less than 0.05dB as shown in Table II. In addition, the
performance is much better than 2FSS algorithm. This means

our proposed algorithm with moving window expansion can

accurately catch the complex motion in Stefan.
Fig. 7 is the run time data of Stefan sequence. It shows our

proposed content-adaptive fast algorithm can greatly reduce
the complexity of integer motion estimation and contribute to
respectively 86% and 43% run time reduction compared to full
search and fast search algorithm in reference software JM8.2.

V. CONCLUSIONS

We propose a content-adaptive fast algorithm for variable
block-size integer motion estimation in H.264. Our algorithm
can adjust the searching effort according to the motion activity,
and find a good trade-off between quality and computation.
About 98% searching candidates and 86% encoding time are

reduced with at most 0.05dB quality drop in average compared
with full search even for complex motion videos. Because
of the good data reuse scheme and simple control flow, the

Fig. 7. Run time of Stefan sequence for whole H.264 encoder.

proposed algorithm is suitable for hardware implementation.

REFERENCES

[1] Joint Video Team of ITU-T and ISO/IEC JTC 1, "Draft ITU-T Rec-
ommendation and Final Draft International Standard of Joint Video
Specification (ITU-T Rec. H.264 ISO/IEC 14496-10 AVC)," Mar.
2003.

[2] "H.264/AVC reference sofware JM8.2," July 2004.
[3] Y.-W. Huang, T.-C. Wang, B.-Y. Hsieh, and L.-G. Chen, "Hardware

architecture design for variable block size motion estimation in MPEG-4
AVC/JVT/ITU-T H.264," Proc. IEEE Int'l Symposium on Circuits and
Systems, vol. 2, pp. 796-799, 2003.

[4] L.-M. Po and W.-C. Ma, "A novel four-step search algorithm for fast
block motion estimation," IEEE Transactions on Circuits and Systems
for Video Technology, vol. 6, no. 3, pp. 313-317, June 1996.

[5] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, "A novel
unrestricted center-biased diamond search algorithm for block motion
estimation," IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 8, no. 4, pp. 369-377, Aug. 1998.

[6] M. Chan, Y. Yu, and A. Constantinides, "Variable size block matching
motion compensation with applicatoins to video coding," Proc. IEE on

Communications, Speech and Vision, vol. 137, no. 4, pp. 205-212, Aug.
1990.

[7] I. Rhee, G. R. Martin, S. Muthukrishnan, and R. A. Packwood, "Quadtree-
structured variable-size block-matching motion estimation with minimal
error," IEEE Transactions on Circuits and Systems for Video Technology,
vol. 10, no. 1, pp. 42-50, Feb. 2000.

[8] Z. Zhou, M.-T. Sun, and Y.-F. Hsu, "Fast variable block-size motion esti-
mation algorithm based on merge and slit procedures for H.264/MPEG-4
AVC," Proc. IEEE Int'l Symposium on Circuits and Systems, vol. 3, pp.
725-728, 2004.

[9] S. Saponara and L. Fanucci, "Data-adaptive motion estimation algorithm
and VLSI architecture design for low-power video systems," Proc. IEE
on Computers and Digital Techniques, vol. 151, pp. 51-59, 2004.

- 344 -

H .264 Baseline Profile, JM8.2, 1 reference frame, IPPP...
QP = 15, 18, 21, 24, 27, 30, 33, 36, 39, 42

PSRN drop (dB) Bitrate increase (7/%)7S-earch Point per MB
Foreman, QCIF, SR =±16

6FSS 0.039 -0.04% 105.5
Proposed 0.048 0.14% 55.29
2FSS 0.067 1.54% 20.4

Silent, CIF, SR = ±32
6FSS 0.012 -1.14% 103.02

Proposed 0.023 -1.07% 33.82
2FSS 0.026 -0.61% 18.24

Stefan, CIF, SR = ±32
6FSS 0.037 0.40% 114.49

Proposed 0.048 0.98% 61.1
2FSS 0.149 14.12% 21.18

Mobile, CIF, SR = ±32
6FSS 0.013 -0.87% 103.9

Proposed 0.018 -0.91% 51.9
2FSS 0.019 -0.87% 17.34

Foreman, CIF, SR = ±32
6FSS 0.039 -0. 17% 11 2.02

Proposed 0.05 0.03% 67.5
2FSS 0.078 2. 17% 23.68

Coastguard, CIF, SR = ±32
6FSS 0.016 -1 .22% 102.8

Proposed 0.021 -1.32% 43.63
2FSS 0.025 -1.36% 17.95

500
- -JM8.2 (Full Search)

O 400C=--- JM8.2 (Fast Search)

300 - Proposed Algorithm

200

